IV. Visual encoding - marks and channels

1. Creating visualization idioms

Encoding relevant data and map onto visual encodings (=Marks and Channels)

Marks

Marks are geomatric primitive objects classify according to the number of spatial dimensions they require.

For example:

Channels

→ All channels are not equal: the same data attribute encoded with two different visual channels will result in different information content.

2. Principles: Expressiveness and Effectiveness

The use of marks and channels in vis idiom design should be guided by the principles of expressiveness and effectiveness. These ideas can be combined to create a ranking of channels according to the type of data that is being visually encoded.

2.1. Expressiveness principle (match channel and data characteristics)

The visual encoding should express all of and only the information in the dataset attributes Thể hiện tất cảchỉ thông tin có trong thuộc tính dữ liệu

→ The identity chanels are the correct match for the categorical attributes. The magnitude channels are the correct match for the ordered attribute, both ordinal and quantitative

2.2. Effectiveness principle (encode most important attributes with highest ranked channels)

The most important attributes should be encoded with the most effective channels in order to be most noticeable, and then descreasingly important attributes can be matched with less effective channel

→ What the word effectiveness means in the context of visual encoding? According to the criterial of accuracy, discriminability, separability, popout and grouping

2.2.1. Accuracy

image.png

2.2.2. Discriminability

The principle of discriminability refers to the ability of a visual channel to effectively differentiate between items in the data

(Discriminability đề cập đến khả năng phân biệt các sự khác biệt giữa các đối tượng hoặc giá trị khi sử dụng một kênh trực quan)

2.2.3. Separability

The separability principle in visual encoding refers to the independence or interaction between visual channels used to represent different attributes of data.

(Separability đề cập đến khả năng biểu thị các thuộc tính khác nhau mà không có sự tương tác hoặc can thiệp giữa chúng.)

image.png

2.2.4. Popout / Saliency

image.png

Do you see the black sheep?

image.png

Where is Wally?

<aside> 📒

Notes